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Introduction

Introduction

Adapteva Epiphany Coprocessor
@ New scalable many-core architecture
@ Energy efficient platform (50 GFLOPS/Watt)
@ $99 for a Parallella board

Contributions
@ Explored features of the Epiphany
@ Evaluated the performance

@ Demonstrated how to write high performance applications
on this platform
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Epiphany Coprocessor

Features

Multi-core MIMD
architecture

No cache

32 KB of local SRAM in
four banks of 8 KB

Shared address space
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Epiphany Instruction set
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Superscalar CPU - two
floating point operations
(Fused Multiply-Add) and
one 64-bit memory
load/store operation

A
e
A
A
A
A
A
'




Architecture
L o)

Outline

Q Architecture

@ Software Environment



Architecture
oe

Software Environment

Programming Environment

@ C/C++

@ Epiphany SDK
Programming Considerations

@ Memory Size

o Relatively small 32 KB of local RAM per eCore (for storing
both code and data)

e Store code and data in different local memory banks

e Distribute code between multiple cores

@ Processor Capability
e Currently no hardware support for integer multiply, floating
point divide or double-precision floating point operations
e Branching costs 3 cycles. Unroll inner loops to increase
performance
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Experiment Platform

ZedBoard evaluation module with Zynq SoC
Daughter card with Epiphany-1V 64-core (E64G401)
Dual core ARM Cortex-A9 host at 667 MHz
Epiphany eCores at 600 MHz

512 MB of DDR3 RAM on the host

32 MB shared with eCores
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Bandwidth

Experiment: To evaluate cost of sending messages from one
eCore to another
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Latency

Latency for small message transfers
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Latency

Experiment: To evaluate the effect of Node distance on Transfer

Latency
Node 1 | Node 2 | Distance | Time per transfer (nsec)
0,0 0,1 1 11.12
0,0 0,2 2 11.14
0,0 1,2 3 11.19
0,0 0,4 4 11.38
0,0 3,3 5 11.62
0,0 4,4 6 11.86
0,0 7,7 14 12.57

@ 80 bytes are transferred from one eCore to another
@ = 7 cycles per transfer
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Shared Memory Access

Experiment: To evaluate the performance of the external
shared memory, multiple nodes write to the shared memory
simultaneously. Each eCore continuously writes blocks of 2
KBytes over 2 seconds and the utilization is measured

Node (Total No) Iterations Utilization
0,0 61037 0.41
. 0,1 48829 0.33
27 2 nodes 1,0 24414 0.17
1,1 12207 0.08
0,71,72,73,7 27460+ 0.187 each
(8) 3050+ 0.021 each
(4) 2040+ 0.014 each
8 * 8 nodes (8) 100 - 1000
9) 10-100
(7) 1-10
(24) 0

@ Nodes closer to
column 7 and row 0
get the best write
access

@ Write throughput of
150 MB/sec
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Heat Stencil
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Heat Stencil Equation

Five-point star-shaped stencil

Tnew,-,,- = Wy % Tprev,-,,+1 + Wo x Tprev,v,/-
+ W3 * Tprev,-yj_1 + W4 * Tprev,-+1,j
+ W5 * Tprevl.717j
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Implementation

@ Hand-tuned unrolled assembly code
@ “In-place” implementation

@ Size of grid limited by local memory (and size of assembly
code)

@ All 64 registers used and managed carefully
@ Grid initialized in the host and transferred to each eCore

@ Computation followed by communication phase in each
iteration
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Computation Phase

OO OO
N N NS Ny

1000 000

0000 000 )

™
/
)
J
)
/
)
J
™

0000 000 )

0000 - 000

000 000 O

.
©

Grid sizes of 20 x X.
Width of 20 decided
based on register
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@ Continuous runs of Fused
Multiply-Add (FMADD)
interleaved with 64-bit
load/store

@ 5 grid points accumulated
atatime
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Heat Stencil

(<))
(%9}
©
<
o
C
§e
-—
(4v)
9
C
)
£
£
o
&)

o Synchronization between
neighbouring eCores
@ Transfers started after
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@ Results
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Floating point performance

Single-core Floating point performance in GFLOPS
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Stencil evaluated for 50
iterations.

@ 81-95% of peak
performance
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Floating point performance

64-core Floating point performance in GFLOPS
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@ 83% of peak performance
with communication
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*Lighter colors show performance without communication
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Weak Scaling

Weak Scaling - Number of eCores vs Time

@ Number of eCores from 1
to 64
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Strong Scaling

Strong Scaling - Number of eCores vs Speedup
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Conclusions

Conclusions and Future Work

@ Heat Stencil running at 65 GFLOPS (83%)
o ~ 32 GFLOPS/Watt assuming 2W power consumption
e Double-buffering of boundary regions to overlap
computation and communication
@ Epiphany platform holds high potential for HPC
e Considerable effort to extract high performance

@ Memory constraint important factor while designing
algorithms
e Streaming algorithm to process higher grid sizes
e Future version of Epiphany to have 4096 cores (70
GFLOPS/Watt)



Questions?
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